1) Sketch the points $P(6,2,3), Q(-5,-1,4), R(1,3,8)$ and $S(2,-2,2)$ on a single set of coordinate axes.

2) Which of the points from problem 1 is closest to:
a) $x z$-plane?
b) xy-plane?
c) yz-plane?
3) What are the projections of point R from problem 1 on the:
a) $x z$-plane?
b) $x y$-plane ?
c) yz-plane ?
4) Describe and sketch the surface in \mathbb{R}^{3} represented by the equation:
a) $x=3$
b) $z=5$
c) $x+y=2$

5) Determine whether the points lie on a straight line. $\mathrm{A}(5,1,3), \mathrm{B}(7,9,-1), \mathrm{C}(1,-15,11)$
6) Find the lengths of the sides of the triangle with the indicated vertices, and determine whether the triangle is a right triangle, an isosceles triangle, or neither. $A(3,4,1), B(0,6,2), C(3,5,6)$
7) Find the standard equation of the sphere.
a) Center: $(0,2,5)$, Radius: 2
b) Endpoints of a diameter: $(2,0,0),(0,6,0)$
c) Center: $(-3,2,4)$, tangent to the $y z$-plane
8) Complete the square to write the equation of the sphere in standard form. Find the center and radius.
a) $x^{2}+y^{2}+z^{2}+9 x-2 y+10 z+19=0$
b) $4 x^{2}+4 y^{2}+4 z^{2}-24 x-4 y+8 z-23=0$
9) Describe in words the region of \mathbb{R}^{3} represented by the equation or inequality.
a) $y=-4$
b) $y \geq 0$
c) $0 \leq z \leq 6$
d) $x^{2}+y^{2}+z^{2} \leq 3$
e) $x^{2}+z^{2} \leq 9$
10) Write inequalities to describe the region.
a) The region between $x y$ - plane and horizontal plane $z=5$
b) The solid cylinder that lies on or below the plane $z=5$ and on or above the circular trace on the $x y$ - plane with center located on the origin and radius 2 .
c) The solid upper hemisphere of the sphere of radius 4 centered at the origin.
